
Modeling neural decoder based on spiking neurons in DEVS

Yuri Boiko and Gabriel Wainer
Carleton University

1125 Colonel By Drive,
Ottawa, ON, K1S 5B6 CANADA

yuri.boiko@rocketmail.com, gwainer@sce.carleton.ca

Keywords: Discrete event simulation, DEVS, Brain
Machine, spiking neuron, spiking decoding, neural
spiking decoder

Abstract
 Presented is the simulation of the Neural Spiking
Decoder, thus attaining next level in hierarchy of the
Brain Machine devices based on the spiking neurons
reported so far and thus further extending the reported
simulation of selected elements of Brain Machine in
DEVS environment employing CD++ toolkit. Neural
decoder based on spiking neurons is chosen for modeling
in DEVS formal definitions. Signal of the encoded in
ternary alphabet test messages of spike sequences is
employed to verify functionality of the spiking neural
decoder. Spike sequences are split between two channels
– one for initiating spikes and another one for terminating
ones. Spiking neurons with rectangular response function
are considered in the presented model. Firing condition
for the spiking neuron is reached when two rectangular
responses, one for the initiating spike and another one for
terminating spike, overlap in time domain, as a result
producing “1” at the output (firing signal) or alternatively
“0” (non-firing output signal).

1. INTRODUCTION
 Modeling of the parts of the Brain Machine is
attracting attention of the simulation and design research
communities [1 – 6] due to expected technological impact
of the progress in the area as well as due to significant
benefits, which modeling can offer in optimization of the
design and achieving operational efficiency of the
complex systems, which are expensive to implement and
experiment with in hardware. DEVS (Discrete Event
System Specification) methodology recently gained
recognition for its usefulness in modeling various systems
of artificial and/or natural descent [1]. DEVS formalism
divides systems under study into atomic models, which
contain discrete number of states and is equipped with the
input and output ports for interaction with each other and
external environment. In this approach atomic models are
used as building blocks of more complex coupled models,
which constitute next level in the hierarchy of model
complexity. In turn, coupled models can be used as

building blocks for the next hierarchical levels, thus
opening way of creating models of any desired level of
sophistication. The discrete representation of the time
scale of events, in which only meaningful events are
accounted for in simulation, allows retaining speed of the
simulation even of highly complex models. CD++ toolkit
is used for programming the models. Simulation is
implemented in Eclipse integrated environment with some
functions implemented as C++ modules.

2. DEVS PROBLEM FORMULATION AND

IMPLEMENTATION
2.1 Model of Spiking Neural Decoder
Spiking neural networks are regarded as a next generation
devices with significant advantage in speed over the
traditional neural network devices [4]. In the present
study DEVS formalism is employed in defining model of
the neural spiking decoder, which function is to decode
the incoming signal of spike sequences. The incoming
messages are encoded in terms of time intervals between
the initiating and terminating spikes, which here for
simplicity of recognition are split into two parallel but
separate channels. The general structure of the neural
spiking decoder under consideration is shown in Fig.1.

Figure 1. Schematic of model of the neural spiking

decoder. Alphabet is {A; B; C} with encoding rules
listed via spike intervals. At the input there are three
test combinations encoded in time intervals, at the
output – the decoded sequence in terms of {0;1}
triples. Neurons A, B and C are firing “1” in
response to encoded by spikes intervals symbols “A”,
“B” and “C”, or outputting “0” otherwise.

C
100 = A
010 = B
001 = C

{0;1}

{0;1}

{0;1}

3 msec
5 msec

9 msec

A: ∆∆∆∆t= [1, 4] msec

B: ∆∆∆∆t= [5, 8] msec

C: ∆∆∆∆t= [9, 12] msec

CBA
A

B

 . .
 .

[top]
components : Transformer Neuron Neuron1 Neuron2
in : in_1 in_2
out : decoder_output control_output control1_output control2_output
Link : in_1 in_1@Transformer
Link : in_2 in_2@Transformer
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Neuron
Link : out_1@Transformer neuron_on@Neuron
Link : out_2@Transformer neuron_off@Neuron
Link : neuron_out@Neuron decoder_output
Link : clk_control@Neuron control_output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Neuron1
Link : out_1@Transformer neuron1_on@Neuron1
Link : out_2@Transformer neuron1_off@Neuron1
Link : neuron1_out@Neuron1 decoder_output
Link : clk1_control@Neuron1 control1_output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Neuron2
Link : out_1@Transformer neuron2_on@Neuron2
Link : out_2@Transformer neuron2_off@Neuron2
Link : neuron2_out@Neuron2 decoder_output
Link : clk2_control@Neuron2 control2_output

Figure 2. Schematic of the Simulator of Spiking Neural Decoder.

 .
The incoming message is the series of spikes, where
symbols are encoded in terms of time intervals ∆t between
odd and even spikes, where odd spikes initiate the time
intervals of the symbol and even spikes terminate it.
Ternary alphabet is used with symbols selected from the set
{A; B; C}. As it is depicted in Fig.1, the encoding table of
the alphabet symbols via ∆t intervals is as follows: 1 msec<
∆t < 4 msec for “A”, 5 msec< ∆t < 8 msec for “B”, and 9

msec< ∆t < 12 msec for “C”. Spiking neurons A, B and C
are responding to incoming symbol with output of 1 if the
symbol is respectively “A”, “B” or “C”, while producing 0
as the output otherwise. In other words, neuron A is
responding with output of 1 if incoming spikes are separated
by ∆t as that for symbol “A” from the encoding table and
with output of 0 otherwise (i.e. for symbols “B” and “C”).

Controller-1
Timer-1

Controller-2
Timer-2

Controller-3
Timer-3

Spiking Neuron A

Spiking Neuron B

Spiking Neuron C

Pulses
Trans-
former

signal

reference
Input #1

Input #2

Spiking Neural Decoder

clk-1

A

B

C

clk-3

clk-2

Out

Neurons B and C behave similarly, but for spikes with
encoded symbols “B” and “C” respectively

2.2 Spiking Neural Decoder as top model
The top model of Spiking Neural Decoder can be designed
as shown in Fig.2. This design is relying on atomic and
coupled models developed and tested in the model of
Spiking Neural Terminal, described earlier [5].
Properties of the model of Spiking Neural Decoder differ
from that of Spiking Neural Terminal of [5] in that in the
Decoder the whole range of the time intervals is covered
with three Neurons A, B and C connected in parallel (see
Fig.1 and Fig 2) and therefore given legitimate symbol at
the input the model has to provide response "1" at the output
of the corresponding neuron (i.e. neuron A if input symbol
is "A", neuron B if it is "B", and neuron C if it is "C") and
output of "0" at the rest of neurons. Therefore the properties
of the decoder's model can be formulated as a following set
of rules, confirmation for which can be seen in the Table 7
(enumeration of the rules is connected to that of [5] in order
to emphasize the fact that all these rules are related as the
Decoder as the top model here is built from the atomic and
coupled models of [5], where Spiking Neural Terminal was
the last level of hierarchy; therefore the first rule number
here is (xviii) as the next number after the last rule number
in [5]):
(xviii) for legitimate symbol inputs ("A", "B" and "C") there

is always "1" at one firing output and "0" at the rest of
firing outputs (where firing outputs are those comprising
A, B and C outputs in Fig.1 and Fig.2);

(xix) for each control output in SNT Simulator (variable
control_output in Table) there are three consequtive
control outputs of the same value ("1" or "-1") in the
Decoder Simulator (outputs clk-1, clk-2 and clk-3 in Fig.2
and variables control_output, control1_output and
control2_output in Table);

Table. Comparative test of Spiking Neural Decoder

and Spiking Neuron Terminal Simulators
(rules xviii-xx).

 Output data for the
Spiking Neuron

Terminal Simulator

Output data for the
Spiking Neural Decoder

Simulator
1 2 3

*

00:00:00:001 control_output 1
00:00:00:001 terminal_output 0

00:00:00:013 terminal_output 0

00:00:00:015 control_output 1

00:00:00:001 control_output 1
00:00:00:001 decoder_output 1
00:00:00:001 control1_output 1

00:00:00:001 decoder_output 0
00:00:00:001 control2_output 1
00:00:00:001 decoder_output 0
00:00:00:013 decoder_output 0
00:00:00:013 decoder_output 0
00:00:00:013 decoder_output 0
00:00:00:015 control_output 1

00:00:00:015 control1_output 1
00:00:00:015 control2_output 1

*

□

◊

00:00:00:016 control_output -1
00:00:00:016 terminal_output 0

00:00:00:020 control_output 1

00:00:00:021 control_output -1

00:00:00:022 control_output 1

00:00:00:023 control_output -1

00:00:00:024 control_output 1

00:00:00:025 control_output -1

00:00:00:026 control_output 1

00:00:00:027 control_output -1

00:00:00:028 control_output 1

00:00:00:029 control_output -1
00:00:00:029 terminal_output 0

00:00:00:032 control_output 1

00:00:00:033 control_output -1

00:00:00:034 control_output 1

00:00:00:035 control_output -1

00:00:00:036 control_output 1
00:00:00:036 terminal_output 1

00:00:00:039 control_output 1

00:00:00:040 control_output -1

00:00:00:041 control_output 1

00:00:00:016 control_output -1
00:00:00:016 decoder_output 1

00:00:00:016 control1_output -1
00:00:00:016 decoder_output 0
00:00:00:016 control2_output -1
00:00:00:016 decoder_output 0
00:00:00:020 control_output 1
00:00:00:020 control1_output 1
00:00:00:020 control2_output 1

00:00:00:021 control_output -1
00:00:00:021 control1_output -1
00:00:00:021 control2_output -1

00:00:00:022 control_output 1
00:00:00:022 control1_output 1
00:00:00:022 control2_output 1
00:00:00:023 control_output -1
00:00:00:023 control1_output -1
00:00:00:023 control2_output -1
00:00:00:024 control_output 1
00:00:00:024 control1_output 1

00:00:00:024 control2_output 1
00:00:00:025 control_output -1
00:00:00:025 control1_output -1
00:00:00:025 control2_output -1
00:00:00:026 control_output 1
00:00:00:026 control1_output 1
00:00:00:026 control2_output 1

00:00:00:027 control_output -1
00:00:00:027 control1_output -1
00:00:00:027 control2_output -1

00:00:00:028 control_output 1
00:00:00:028 control1_output 1
00:00:00:028 control2_output 1
00:00:00:029 control_output -1
00:00:00:029 decoder_output 0
00:00:00:029 control1_output -1
00:00:00:029 decoder_output 0
00:00:00:029 control2_output -1

00:00:00:029 decoder_output 1
00:00:00:032 control_output 1
00:00:00:032 control1_output 1

00:00:00:032 control2_output 1
00:00:00:033 control_output -1
00:00:00:033 control1_output -1
00:00:00:033 control2_output -1

00:00:00:034 control_output 1
00:00:00:034 control1_output 1
00:00:00:034 control2_output 1

00:00:00:035 control_output -1
00:00:00:035 control1_output -1
00:00:00:035 control2_output -1
00:00:00:036 control_output 1
00:00:00:036 decoder_output 0
00:00:00:036 control1_output 1
00:00:00:036 decoder_output 1
00:00:00:036 control2_output 1

00:00:00:036 decoder_output 0
00:00:00:039 control_output 1
00:00:00:039 control1_output 1

00:00:00:039 control2_output 1
00:00:00:040 control_output -1
00:00:00:040 control1_output -1
00:00:00:040 control2_output -1

00:00:00:041 control_output 1

◊

◊

00:00:00:042 control_output -1

00:00:00:043 control_output 1

00:00:00:044 control_output -1

00:00:00:045 control_output 1

00:00:00:046 control_output -1
00:00:00:046 terminal_output 1

00:00:00:049 control_output 1

00:00:00:050 control_output -1

00:00:00:051 control_output 1

00:00:00:052 control_output -1

00:00:00:053 control_output 1

00:00:00:054 control_output -1
00:00:00:054 terminal_output 1

00:00:00:041 control1_output 1
00:00:00:041 control2_output 1

00:00:00:042 control_output -1
00:00:00:042 control1_output -1
00:00:00:042 control2_output -1
00:00:00:043 control_output 1
00:00:00:043 control1_output 1
00:00:00:043 control2_output 1
00:00:00:044 control_output -1

00:00:00:044 control1_output -1
00:00:00:044 control2_output -1
00:00:00:045 control_output 1

00:00:00:045 control1_output 1
00:00:00:045 control2_output 1
00:00:00:046 control_output -1
00:00:00:046 decoder_output 0
00:00:00:046 control1_output -1
00:00:00:046 decoder_output 1
00:00:00:046 control2_output -1
00:00:00:046 decoder_output 0

00:00:00:049 control_output 1
00:00:00:049 control1_output 1
00:00:00:049 control2_output 1
00:00:00:050 control_output -1
00:00:00:050 control1_output -1
00:00:00:050 control2_output -1
00:00:00:051 control_output 1

00:00:00:051 control1_output 1
00:00:00:051 control2_output 1
00:00:00:052 control_output -1

00:00:00:052 control1_output -1
00:00:00:052 control2_output -1
00:00:00:053 control_output 1
00:00:00:053 control1_output 1
00:00:00:053 control2_output 1
00:00:00:054 control_output -1
00:00:00:054 decoder_output 0
00:00:00:054 control1_output -1

00:00:00:054 decoder_output 1
00:00:00:054 control2_output -1
00:00:00:054 decoder_output 0

1 2 3
(xx) for each firing output in SNT Simulator (variable

terminal_output in the Table) there are three consequtive
firing outputs in the Decoder Simulator (variable
decoder_output in the Table);

(xxi) for each "0" firing output in SNT Simulator (see marks
"*" and "□" for terminal_output in the Table) there are
three sequential outputs of either 1, 0, 0 or 0, 0, 1 (see
those marked by respectively "*" for 100 and by "□" for
001 in the Table) at the Decoder Simulator firing output
(output "Out" in Fig.2);

(xxii) for each "1" firing output in SNT Simulator (see
marks "◊" for terminal_output in the Table) there are three
sequential outputs of 0, 1, 0 at the Decoder Simulator
firing output (output "Out" in Fig.2 and variable
decoder_output in the Table).

 It is seen from the Table, that the rules (xviii)-(xxii) are
followed precisely. For instance, the rule (xviii) is always
followed for all positions in the Table marked with either

"*", " □" or "◊". The rule (xix) is followed too as there are 3
control outputs in the Decoders column for each control
output in the SNT column. Similarly, the rule (xx) is
confirmed by the data of the Table, as there are 3 firing
outputs in the Decoders column for each firing output in the
SNT column. The rule (xxi) is verified by entries marked by
"*" and "□", while the rule (xxii) by entries with "◊" marks
in the Table.
 This concludes design, properties verification and
validation of the top model of Spiking Neural Decoder
Simulator, programmed in CD++ tool employing DEVS
formalism approach. The model is validated at the level of
its atomic components, coupled model components and top
integrated hierarchical level.

3. CONCLUSIONS
The following conclusions can be drawn form the above
considerations.
1. CD++ toolkit is demonstrated as a suitable environment

for simulation of the Spiking Neural Decoder, which is
based on model of Spiking Neural Terminal (SNT)
under DEVS formalism.

2. The model of Spiking Neural Decoder is built based on
atomic and coupled sub-models involved as basic
elements of reported earlier model of Spiking Neural
Terminal. The expected properties of the Decoder’s
model are formulated and are subjected to validation
test, part of which stems from already validated rules
for SNTs. Validation tests are conducted and the
simulator of Spiking Neral Decoder is validated.

3. Hierarchy of the atomic models of amplifier, timer and
controller, as well as coupled models of Pulses
Transformer and Spiking Neuron comprising the
coupled model of Spiking Neural Terminal are shown
to support correct operation of the Decoder’s model.

References:
[1] Zeigler, B.P., The brain-machine disanalogy revisited,
BioSystems, Vol. 64, pp. 127-140. (2002).
[2] Michael Korkin1, Norberto Eiji Nawa, Hugo de Garis,
A "Spike Interval Information Coding" Representation for
ATR's CAM-Brain Machine (CBM) Volume 1478 (1998).
[3] Obeid, I. Wolf, P.D, "Evaluation of spike-detection
algorithms for a brain-machine interface application",-
Biomedical Engineering, IEEE Transactions on, Volume 51,
Issue 6, page(s) 905- 911, June 2004.
 [4] R Mayrhofer, M Affenzeller, H Prahofer, G Hofer, A.,
“DEVS Simulation of Spiking Neural Networks”, -
Proceedings of Cybernetics and Systems (EMCSR), 2002.
 [5] Y. Boiko and G. Wainer, “Modeling Spiking Neural
Terminals in DEVS”,- Proceedings of the 2008 Spring
simulation multiconference, Spring SIM’2008 Poster
Session, Article No. 19 in 2008 poster track, Ottawa 2008.
[6] Y. Boiko and G. Wainer, “Modeling quantum dot
devices in Cell-DEVS environment”,- ibid., Article No.18.

